Ma2a Practical – Recitation 3

Fall 2024

Exercise 1. (Gompertz equation) Consider the equation

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \mathrm{ry}\log\left(\frac{\mathrm{K}}{\mathrm{y}}\right)$$

where r and K are positive constants.

- 1. Sketch the graph of $f(y) = rylog(\frac{K}{y})$ versus y, find the critical points (f(y) = 0), and determine whether each equilibrium is asymptotically stable or unstable. Sketch typical solution curves in the extended phase space.
- 2. Solve the equation with initial condition $y(0) = y_0 > 0$ (you may use the change of variable $u = \log(\frac{y}{K})$.

Exercise 2. (Exact equations) Determine whether each of the following equation is exact, and if it is exact find the solutions.

1.
$$\frac{y}{x} + 6x + (\ln x - 2)y' = 0.$$

2. $e^x \sin y - 2y \sin x + (e^x \cos y + 2 \cos x)y' = 0$.

Exercise 3. (Separable equations) Consider the differential equation:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sqrt{|y|}, \quad y(0) = 0.$$

Solve the general solution for this differential equation and prove it doesn't satisfy uniqueness theorem.

Solution 1

- 1. We have the autonomous equation y' = f(y) with $f(y) = ry \log(\frac{K}{y})$.
 - (a) Exitence and uniqueness for the IVP. The function f is differentiable and its derivative is continuous on $\mathbb{R}_{>0}$ so we have the existence and uniqueness of solution for any initial value $y(t_0) = y_0 > 0$.
 - (b) Equilibrium. Recall that the equilibrium corresponds to constant solutions to the equation. Equivalently, they are zeros of f. Thus, for this equation, there is only one equilibrium $y_0 = K$.
 - (c) Stability of the equilibrium. Recall that the equilibrium y_0 is called *stable* if solutions around y_0 go back to y_0 as t increases. If the solutions around y_0 move away from y_0 , the equilibrium is called *unstable*. Crucially, stability can be read off from the phase diagram by looking at the sign of the derivative around y_0 .

From the above graph, we see y' > 0 for $y < y_0$ and y' < 0 for $y > y_0$ so the system tends to go back to y_0 , which implys that y_0 is stable.

2. By using the substitution $u = \log(\frac{y}{K})$, we have $u' = \frac{Ky'}{y}$ and the equation becomes

$$\mathfrak{u}' + Kr\mathfrak{u} = 0.$$

The general solution is $u(t) = Ae^{-Krt}$, and the initial condition $u(0) = \log(\frac{y_0}{K})$ gives the value of A. Going back to y, we obtain that the unique solution to the IVP is

$$y(t) = K \exp\left(\log\left(\frac{y_0}{K}\right) e^{-Krt}\right).$$

Solution 2

Both equations are exact. We have:

- 1. $\frac{d}{dy}(y/x+6x) = 1/x.$ $\frac{d}{dx}(\ln x 2) = 1/x.$
- 2. $\frac{d}{dy}(e^x \sin(y) 2y\sin(x)) = e^x \cos(y) 2\sin(x).$ $\frac{d}{dx}(e^x \cos(y) + 2\cos(x)) = e^x \cos(y) 2\sin(x).$
- 1. Solve: Given $F_x = y/x + 6x$, we know: i) $F = y\ln(x) + 3x^2 + g(y)$. We know also that: ii) $F_y = \ln x - 2$. Differentiating the former w.r.t y, we have $F_y = \ln x + g'(y)$. Setting equal i) and ii): g'(y) = -2, so $g(y) = -2y + c_1$. Using this, we have $F = y\ln x + 3x^2 - 2y + c_1$. Since we have $\frac{d}{dx}(F(x, y(x))) = 0$, F(x, y(x)) must be some constant, c_2 . So, we have our implicit solution: $y\ln x + 3x^2 - 2y + c_1 = c_2$. Condensing constants, we have simply: $y\ln x + 3x^2 - 2y = c$. This gives us: $y(x) = \frac{c - 3x^2}{\ln(x) - 2}$.
 - 2. Solve:

Given $F_x = e^x \sin(y) - 2y\sin(x)$, we know: $F = e^x \sin(y) + 2y\cos(x) + g(y)$. We know from this that: i) $F_y = e^x \cos(y) + 2\cos(x) + g'(y)$. We also know from the original equation that: ii) $F_y = e^x \cos(y) + 2\cos(x)$ We can deduce from i) and ii) that g'(y) = 0, which means that $g(y) = c_1$ Using the same logic as in the previous problem, we have: $F = e^x \sin(y) + 2y\cos(x) + c_1 = c_2$. Rearranging the constants yields our implicit solution: $e^x \sin(y) + 2y\cos(x) = c$. **Solution 3** Again, this is a separable equation. For $y \ge 0$:

$$\frac{dy}{2\sqrt{y}} = dx$$
$$\int \frac{1}{2\sqrt{y}} dy = \int 1 dx$$
$$\sqrt{y} = x + C$$

Squaring both sides gives:

$$\mathbf{y}(\mathbf{x}) = (\mathbf{x} + \mathbf{C})^2$$

Using the initial condition y(0) = 0:

$$0 = (0 + C)^2$$

Thus, C = 0, and the solution is:

$$\mathbf{y}(\mathbf{x}) = \mathbf{x}^2$$

But y(x) = 0 is also a solution since:

$$\frac{\mathrm{d}}{\mathrm{d}x}(0) = 2\sqrt{|0|} = 0$$

Thus, there are two solutions:

 $-\mathbf{y}(\mathbf{x}) = \mathbf{x}^2$, $\mathbf{y}(\mathbf{x}) = 0$

This doesn't contradict the uniqueness theorem since the assumption of the continuity theorem is not satisfied.