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Exercise 1. (Gompertz equation)
Consider the equation

dy K

=2yl =

T <y>
where 1 and K are positive constants.

1. Sketch the graph of f(y) = rylog(g) versus Y, find the critical points (f(y) = 0),
and determine whether each equilibrium is asymptotically stable or unstable.
Sketch typical solution curves in the extended phase space.

2. Solve the equation with initial condition y(0) = yp > 0 (you may use the change
of variable u = log ().

Exercise 2. (Exact equations) Determine whether each of the following equation is
exact, and if it is exact find the solutions.

1. 24+6x+(Inx—2)y" =0.

2. e¥siny —2ysinx + (e¥cosy +2cosx)y’ =0.

Exercise 3. (Separable equations) Consider the differential equation:

dy
= =2/}, 0) =0.
™ yl, y(0)

Solve the general solution for this differential equation and prove it doesn’t satisfy
uniqueness theorem.



Solution 1
1. We have the autonomous equation y = f(y) with f(y) = ry log(g).

(a) Exitence and uniqueness for the IVP. The function f is differentiable and its
derivative is continuous on R~y so we have the existence and uniqueness
of solution for any initial value y(to) =yo > 0.

(b) Equilibrium. Recall that the equilibrium corresponds to constant solutions
to the equation. Equivalently, they are zeros of f. Thus, for this equation,
there is only one equilibrium yg = K.

(c) Stability of the equilibrium. Recall that the equilibrium yy is called stable if
solutions around yg go back to yp as t increases. If the solutions around
Yo move away from yo, the equilibrium is called unstable. Crucially, stabil-
ity can be read off from the phase diagram by looking at the sign of the
derivative around yp.

From the above graph, we see y >0fory <ypandy <O fory > yg so
the system tends to go back to yo, which implys that yo is stable.

. cl . Ku'’ .
2. By using the substitution u = log (), we have u’ = = and the equation
becomes
u’ +Kru=0.

The general solution is u(t) = Ae~ X", and the initial condition 1(0) = log (}{(—0)
gives the value of A. Going back to y, we obtain that the unique solution to the

IVP is
y(t) = Kexp (log (%) e*Krt) .



Solution 2
Both equations are exact. We have:

1. d%(y/x—i—6x) =1/x.
d%((lnx—Z) =1/x.

(e*sin(y) —2ysin(x)) = e*cos(y) — 2sin(x).
(e*cos(y) +2cos(x)) = e*cos(y) — 2sin(x).

1. Solve:
Given Fyx = y/x + 6x, we know:
i) F =yln(x) +3x> +g(y).
We know also that:
ii) Fy = Inx —2.
Differentiating the former w.r.t y, we have F, = Inx + g’(y).
Setting equal i) and ii):
9'ly) =-2,50 g(y) = -2y +c1.
Using this, we have F = ylnx + 3x* — 2y + ¢;.
Since we have d%((F(x,y(x))) =0, F(x,y(x)) must be some constant, c;.
So, we have our implicit solution: ylnx + 3x% —2y +c; = co.
Condensing constants, we have simply: ylnx + 3x*> —2y = c.
This gives us: y(x) = ﬁ%"jz
2. Solve:
Given Fy = e*sin(y) — 2ysin(x), we know:
F = e*sin(y) + 2ycos(x) + g(y).
We know from this that:
i) Fy = e*cos(y) 4+ 2cos(x) + g’(y).
We also know from the original equation that:
ii) Fy, = e*cos(y) +2cos(x)
We can deduce from i) and ii) that g’(y) = 0, which means that g(y) = ¢;
Using the same logic as in the previous problem, we have:
F = e*sin(y) +2ycos(x) +c1 = c».
Rearranging the constants yields our implicit solution: e*sin(y) + 2ycos(x) = c.



Solution 3 Again, this is a separable equation. For y > 0:

dy

—— =dx

24
Jldy—Jldx
24

Vy=x+C

Squaring both sides gives:

y(x) = (x+C)°
Using the initial condition y(0) = 0:

0=(0+C)?

Thus, C =0, and the solution is:

dx
Thus, there are two solutions:
-y =x*,y(x) =0
This doesn’t contradict the uniqueness theorem since the assumption of the conti-
nuity theorem is not satisfied.



