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Fall 2024

Exercise 1. (Gompertz equation)
Consider the equation

dy

dt
= ry log

(
K

y

)
where r and K are positive constants.

1. Sketch the graph of f(y) = rylog(Ky ) versus y, find the critical points (f(y) = 0),
and determine whether each equilibrium is asymptotically stable or unstable.
Sketch typical solution curves in the extended phase space.

2. Solve the equation with initial condition y(0) = y0 > 0 (you may use the change
of variable u = log(yK).

Exercise 2. (Exact equations) Determine whether each of the following equation is
exact, and if it is exact find the solutions.

1. y
x + 6x+ (ln x− 2)y ′ = 0.

2. ex siny− 2y sin x+ (ex cosy+ 2 cos x)y ′ = 0.

Exercise 3. (Separable equations) Consider the differential equation:

dy

dx
= 2

√
|y|, y(0) = 0.

Solve the general solution for this differential equation and prove it doesn’t satisfy
uniqueness theorem.
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Solution 1

1. We have the autonomous equation y
′
= f(y) with f(y) = ry log(Ky ).

(a) Exitence and uniqueness for the IVP. The function f is differentiable and its
derivative is continuous on R>0 so we have the existence and uniqueness
of solution for any initial value y(t0) = y0 > 0.

(b) Equilibrium. Recall that the equilibrium corresponds to constant solutions
to the equation. Equivalently, they are zeros of f. Thus, for this equation,
there is only one equilibrium y0 = K.

(c) Stability of the equilibrium. Recall that the equilibrium y0 is called stable if
solutions around y0 go back to y0 as t increases. If the solutions around
y0 move away from y0, the equilibrium is called unstable. Crucially, stabil-
ity can be read off from the phase diagram by looking at the sign of the
derivative around y0.
From the above graph, we see y

′
> 0 for y < y0 and y

′
< 0 for y > y0 so

the system tends to go back to y0, which implys that y0 is stable.

2. By using the substitution u = log
(
y
K

)
, we have u ′ = Ky ′

y and the equation
becomes

u ′ +Kru = 0.

The general solution is u(t) = Ae−Krt, and the initial condition u(0) = log
(
y0
K

)
gives the value of A. Going back to y, we obtain that the unique solution to the
IVP is

y(t) = K exp
(

log
(y0

K

)
e−Krt

)
.
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Solution 2
Both equations are exact. We have:

1. d
dy(y/x+ 6x) = 1/x.
d
dx(lnx− 2) = 1/x.

2. d
dy(e

xsin(y) − 2ysin(x)) = excos(y) − 2sin(x).
d
dx(e

xcos(y) + 2cos(x)) = excos(y) − 2sin(x).

1. Solve:
Given Fx = y/x+ 6x, we know:
i) F = yln(x) + 3x2 + g(y).
We know also that:
ii) Fy = lnx− 2.
Differentiating the former w.r.t y, we have Fy = lnx+ g ′(y).
Setting equal i) and ii):
g ′(y) = −2, so g(y) = −2y+ c1.
Using this, we have F = ylnx+ 3x2 − 2y+ c1.
Since we have d

dx(F(x,y(x))) = 0, F(x,y(x)) must be some constant, c2.
So, we have our implicit solution: ylnx+ 3x2 − 2y+ c1 = c2.
Condensing constants, we have simply: ylnx+ 3x2 − 2y = c.
This gives us: y(x) = c−3x2

ln(x)−2 .

2. Solve:
Given Fx = exsin(y) − 2ysin(x), we know:
F = exsin(y) + 2ycos(x) + g(y).
We know from this that:
i) Fy = excos(y) + 2cos(x) + g ′(y).
We also know from the original equation that:
ii) Fy = excos(y) + 2cos(x)
We can deduce from i) and ii) that g ′(y) = 0, which means that g(y) = c1
Using the same logic as in the previous problem, we have:
F = exsin(y) + 2ycos(x) + c1 = c2.
Rearranging the constants yields our implicit solution: exsin(y) + 2ycos(x) = c.
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Solution 3 Again, this is a separable equation. For y ⩾ 0:

dy

2
√
y
= dx

∫
1

2
√
y
dy =

∫
1dx

√
y = x+C

Squaring both sides gives:

y(x) = (x+C)2

Using the initial condition y(0) = 0:

0 = (0 +C)2

Thus, C = 0, and the solution is:

y(x) = x2

But y(x) = 0 is also a solution since:

d

dx
(0) = 2

√
|0| = 0

Thus, there are two solutions:
- y(x) = x2 , y(x) = 0
This doesn’t contradict the uniqueness theorem since the assumption of the conti-

nuity theorem is not satisfied.
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